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Abstract-This paper presents a tractable robust moving horizon
estimation (MHE) scheme, where the to be on-line solved
optimization problem is relaxed to a minimization problem with
an guaranteed bound for any allowed uncertainty. This proposed
approach can make use of the additional knowledge of
constraints on states and disturbances to achieve an improvement
in the estimation performance. Simulation results show that the
robust MHE is effective for constrained linear systems with
uncertain model.

Keywords-time domain constraint;moving horizon estimation;
uncertain system

I. INTRODUCTION

In the past three decades, estimation problem has attracted
the interests of many researchers and one of the popular
methods is based on the minimization of the variance of the
estimation error, i.e. the celebrated Kalman filtering approach
[2]. But a central premise in the Kalman filtering theory is that
state-space model is accurate and no constraints on states and
disturbances. As these assumptions are not easily satisfied in
practice, the standard Kalman filter may not be robust against
model uncertainty and disturbances or the performance of the
filter can deteriorate appreciably [7]. So research efforts were
focused on approaches that do not rely on such requirements.
For example, an H. filter is designed by imposing that the H.
norm of the mapping between the disturbances and the
estimation error is minimum. A further possibility consists in
minimizing a quadratic cost function that penalizes the
differences between the measures and the corresponding
predictions, thus leading to the so-called least-squares
estimation. As to the robustness with respect to system
uncertainties for H. estimators, the reader is referred to [4]. In
addition, many robust filtering algorithms, such as min-max
recursive robust filter, set-valued estimation, filtering and
guaranteed cost paradigm, has attracted much attention, see e.g.,
([7,12,13]). In practice, often additional insight about the
process is available in the form of inequality constraints, such
as the concentration of liquid is plus. Here the goal is that of
developing a method that provides robust minimum-variance
state estimates for uncertain constrained linear discrete-time
systems according to a moving horizon approach.

Building on the success of moving horizon control, moving
horizon estimation (MHE) has been suggested as a practical
strategy to incorporate inequality constraints in estimation, e.g.,
([10,6,3]). The basic strategy of the moving horizon
approximation is to consider explicitly a fixed amount of data,
while approximately summarizing the old data not explicitly
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accounted for by the estimator. Rao and Rawlings proved
stability for moving horizon estimation of the constrained
linear system and have demonstrated that MHE is a practical
strategy for constrained state estimation [6].

Despite the vast literature on moving horizon state
estimation, few results on the robustness of such methods is
known to the authors. This motivates our efforts in addressing
robustness to system uncertainty for the moving horizon
estimation [1]. In this paper, we propose robust MHE strategy
for the constrained system with norm bounded parameter
uncertainty in both the state and output matrices. Robust MHE
is, in general, formulated as solving a constrained minimax
(instead of the minimization) problem on-line, where the
maximization is performed over a set of uncertainties and/or
disturbances. But the tractability is a crucial issue of minimax
MHE schemes. Here, we firstly find a guaranteed upper bound
for any allow uncertainties. Then, we make use of the
additional knowledge of constraints on states and disturbances
to achieve an improvement in the estimation performance by
searching a scalar factor.

This paper is organized as follows. Section II proposes the
problem to be studied. The development and formulation of the
proposed robust MHE are presented in Section III. A numerical
example is illustrated in Section IV, which shows the
feasibility of this approach.

II. PROBLEM STATEMENT
Consider constrained discrete-time system

uncertainties as follows:

xk,l = (A+ Ak )xk+ Bwk
y (C + ACk )x vk

subject to the following time-domain constraints:

Xk EXWk W' UkCv

with

(1)

(2)

Xk E 91 is the system state, Yk E 91 iS the measurement,

wk ez 9 and Vk E 91 are system and measurement noise
sequences respectively that satisfy WM, X and V are
polyhedral and convex, the process and measurement noises
has the following assumption:

E{w(k)} 0= , E{v(k)} 0=

E{w(k)vT (k)} 0= , E{w(j)T w(k)} = W1jk (3)

E{v(j)vT (k)} = R1jk I j, k = 0, 1, 2...
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where E(.) denotes the expectation and 8(k) is the Kronecker
Delta function. A, B and C are known real matrices with
appropriate dimensions, and AAk, ACk are unknown matrices
which represent time-varying parameter uncertainties. These
uncertainties are assumed to be of the following structure:

L^CJ L= 'Jt0FkE, FkTFk < I(k > 0) (4)

where Fk E 9ij is an unknown real time-varying matrix, and

HI,H2 and E are known real constant matrices of appropriate
dimensions that specify how the elements of A and C are
affected by uncertainty in Fk

We assume that the system (1) is quadratically stable. To be
more precise, the following definition is introduced.

Definition 1: The system (1) is said to be quadratically
stable if there exists a symmetric positive definite matrix
P such that

[A+AAk]TP[A+AAk]-P <O, k =0,1,2,

for all admissible uncertainties AAk

Moreover, we assume our estimation to be based on data
obtained in the recent past according to a moving horizon
strategy. We shall follow the moving horizon strategy
described in [12] for quite a general setting and specialized in
[6] for constrained linear systems with no uncertainties. More
specifically, at any stage T the objective is to find estimates of
the state vector XT_N (N is the moving horizon size) on the
basis of the observations vector YTN = { YT-N YT-N+1' YT } and

of the prior estimate stateXT_N . Toward this end, we introduce
the following cost function.

T-1

J mTm k Rvk WkQwk
XTNWTNk=TN (5)

+ (XT_N -XT-N )ST-N (XT-N XT-N)

subject to (1) and (2), Vk = Yk -(C+ACk)xk

WT-N {WT-N, WT-NII , WT 4. N is the moving horizon size.

XT_N and WTTN- are the decisional variables of the
optimization. Q, R are symmetric positive matrix, which
indicate the confidence of model disturbance and
measurements of noises. ST-N is error covariance matrix,
which expresses our belief in the prior estimation state XT_N as
compared with the observation model.

The following section will introduce the algorithm of robust
moving horizon estimation.

III. ROBUST MOVING HORIZON ESTIMATION

The basis of moving horizon estimation is the on-line
solving of an optimization problem with constraints, updated
by the actual measurements at each sampling time. In robust
MHE, we strive in general to solve the following optimization
problem for the system (1) with the actual measurement YTT N
in the moving horizon fashion.

Problem 1:For a given pair (xT -,Y, find the optimal

estimate:

(XT_N '{Wk }k=T_N
=

a m IJt(XT-NvAAfv ACfN) (6)

(xTN,{wk}TI) arg ~X NWIN
Subject to (1) and (2), Vk = Yk (C + ACk )Xk.

We can obtain the optimal solution (XT-N {Wk}k )at

time T by solving Problem 1, then the state estimation can be
obtained as follows:

XTNi (A±ATNi TXTN BWT-N+i (7)

(i =0, N -1)
Since the proposed estimation scheme is based on a

minimization optimization with respect to the uncertainties in
the system matrices, we solve the Problem 1 by

* Transform the uncertain mathematical problem into
an equivalent certain mathematical program by
appropriately searching a scaling design parameter;

* Estimate of AAk is available by minimization of an
upper bound on the worst-case cost;

* Find the optimal solution (XT- N {Wk -N) by

minimizing the cost for a given pair (XT N YTfN).
However, the main problem is how to obtain the prior
estimate value X-TN and the covariance matrix ST_N

A. Estimation scheme

First, we assume that the initial conditionx0 is a zero

mean Gaussian random variable independent of the noises wk

andvk, and with an unknown covariance matrix that satisfies
the following assumption.

Assumption ]:
* E[x0xo] So, where So = So > 0 is a known matrix;

* rankLA H1 BQ 2 =n

Our first objective is to design a stable robust estimator of
the form

Xk+ = Akkk+ Kkyk,I = 0 (8)
where Ak and Kk are time-varying matrices to be

determined in order that the variance of the estimation error
(ek =Xk - k) is guaranteed to be smaller than a certain bound
for all uncertainty matrices Fk satisfying (4) , i.e., the
estimation error dynamics satisfies

E[(xk xk)(Xk _xk ) ]< Sk

with Sk being an optimized upper bound of filtering
covariance over the class of robust quadratic filters.
In terms of system (1), (4) and (8), the state-space estimation
for the estimation error ek are as follows:

xk+ = (A,, + HC1FkECl ) k ±G7k,' X(O) = Xo (9)
e.=T Z,

ek =O Wk

Xk= io = 7 k = L = [I 0],
(10)
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Ac [A kC AAk KkC
]Ec [E E],

~
Hi _KkH2] B -Kk]

Kc FkH2
v G=0K

k.

where 7k is a zero-mean white noise signal.
Definition 2: The estimator (8) for system (1) is said to be

a stable quadratic estimator associated with a symmetric
nonnegative definite matrix X satisfies the inequality

(Ac, + Hcl FkEc, )X (Ac, + Hcl FkEc)- X + GGT <0 (11)

for all uncertainties AAk and ACk satisfying (4).
The definition of quadratic estimator is an extension of the

standard Kalman filter. Indeed, in our main result of the paper,

we will show that the quadratic estimator is a modified
Kalman filter where the uncertainties of the system matrices
are appropriately accounted for in the filter structure. It is a

principal task to transform the uncertain mathematical
problem into an equivalent certain mathematical program. To
be more precise, the following definition is introduced.

Definition 3: Filter (8) is said to be a robust quadratic filter
if for some 8k > 0, there exists a bounded rk =IT > 0 that
satisfies the following Riccati difference equation (RDE):

11 THkAjc -HclH>+GWGTnk+1 = Acln k Acl + k clcl +GG(12)
+AClH kEcl(>8k - Ecl k Acl

and such that I - ckECjHkEcTj > 0, where HO0 diagISO,0} and

Q = diag{Q,R}
From [13], we can know that for all admissible

uncertainties, the covariance matrix satisfies the bound

E[fk <T] <VIfrVk c [0,T]]. Furthermore,

E[ekeT ] <LJIkL =ll k' Vk E [0,T] (13)

where HInlk E nxn is the (1,1) block of the matrix HIk and ek

is the estimation error.

B. AAk, ACk calculation

Before calculation AAk, ACk, we introduce the following
two lemmas. Lemma 1 is the matrix converse theorem.
Lemma 2 provides a approximate transform condition from
uncertain system to certain system.

Lemma 1 [11]: For any matrices X and Y of appropriate
dimensions and any constant a > 0

(X -1 a-'YTY)-l = XXyT (aI YXYT) 1yX (14)
Lemma 2[12]: Given matrices Y,H,E of appropriate

dimensions and with Y symmetric, then
Y+HFE+ETFTHT < 0 for all F satisfying FTF<I, if

and only if there exists a scalar > 0 such
thatY±+HHT +± lETE<O.

The following two RDEs need to be introduced which is
related to the content of Lemma 3.

Pk+, = APkAT+ APkET( -EPkFET) EPkAT

+ T1H1H1 BWBT (15)

ek

Sk 1 AQkA _ (AQkCT + HIHT )(R k
+ CQkCT)-1

x(AQkC± H1H2 ) 1 HIHT +BWB
k 6k

From theorem 2.1 of [5], we know that a quadratic estimator
will provide a known guaranteed upper bound for filtering
error covariance. The following Lemma, which shows that the
existence of Pk and Sk is guaranteed by the existence of VJfk
to (12).

Lemma 3: Under Assumption 1, for a given filer of (8) and
for some scalar 8k > 0

* the RDE(12) has a bounded solutionHk over [0,T] and

such that I-kEClHk Ej >0 , then there exists a

bounded solution Pk= PkT > 0 to the RDE(15) over

[0,7T] for the same 8k > 0,and such that Pk1 ekE E>0.
* the RDE (15) has a bounded solution Pkover[0, T]and

such that Pk- kETE >0, then there exists a bounded

solution Sk = S[ > 0 to the RDE (16) over[0,T] for the

same 8k > 0 and such that Sk1 kETE > 0. Furthermore,

Pk > Sk >Oover[O,T].
A proof of Lemma 3 can be found in [9].

Remark 3.1: In general, the optimal solution Hk of (12)
should be of the following partitioned form:

jIk
where all blocks

are nx n matrices, which is argued similar to the continuous-
time case as in [8].

Since the proposed estimation scheme is based on a
minimization optimization with respect to the uncertainties in
the system matrices. We should firstly obtain AAk , ACk at
every sample time throughout the following Theorem.

Theorem 1: Consider that the uncertain system (1) and (4)
satisfies Assumptions 1. Then there exists a robust quadratic
filter for the system that minimizes the bound on the error
variance in (13) if and only if exists 8k > 0 and

min trace(Sk+l) subject to (18),(19) and (20). (17)
Pk+l vSk+l gk

APkA +,8kHlHI +BQB Lk+2 APkE 1
(18)

[ ~ ~ ~~&EPkET _IJk1<(8
T3HWH T AT8kH,HT ASkCT ASET,8kH,Hl + BW -Sk+1 + ASkA Ak 2 + S AkE

& V +SkAH12 CS ET < 0

& & ES E 3k1I

(19)
& denotes transpose of matrix, 8k 1

0 < Sk < Pk (20)

exists a solution Pk= PkT >0 and Sk TS >0 over

[0,7T] with Po =S0 , such that Pk-1 -8kETE > 0 and

sk-CkETE>0 2 is a assistant factor. Moreover, the
optimal guaranteed cost can be obtained by
E[(xk -Xk )(Xk Xk )T ] < Sk . Under this condition, an optimal
quadratic guaranteed cost a priori filter is given by
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(A±+ AAJ)k, ± (AQ~C ± 'Ixk+1 = Aekx (QC+k Hl2)(21)
(R,k + CQkCT) (yk -(C+ACk )Xk ),ko = 0

where
AAk =8kASkE (I-kESkET) E,

ACk =k CSkE (I-kESkET) 'E.
Proof: Firstly, we suppose that there exists a robust

quadratic filter for the uncertain system. It follows from
Definition 3 that there exists a bounded solution Elk > 0 to (12).

From Lemma 3, we can know that bounded positive definite
solution (pk,Sk) exists satisfying Pk' -kETE > 0

and Sk' -8kETE > 0.

Let /Jk =k' the RDEs (15)-(16) can be transformed as follow:

rAPkA +±8kHHl + BWB k+1 APkE 0
L ~ ~~&EPkET _i8k

(22)
rAQkAT + &8kHH + BWBT -k AQkCT +±kHH2T

L ~ ~~&v + ,ikH H2 CTk

Then it follows from (23) that

,6kHIHT + BWBT Sk+ I #kHIH2T FAQkA
& V+±kH2H2 iL &

AQkCT 1

CQkCT j

(24)
where

r& CQA C K Qk [AT CT] Q 1 k -kE E,
Rfi V Hk HT, then we can obtain:

L8kHHT±+ BWBT 8k1IkHlHT A

,8kHHTH V+±J8kH2HT C <0 (25)
A CTh' -Qk (25

r,kHIHT+B±WBT -kS kH H2 1

V +±kH2H2 j

LACI( IETB k ) AT CT]<0

Applying Lemma I to (26), we can obtain

[/kH,HT+ BWBT Ski /kHH2T
V+,kH2H

(26)

(27)

+ L (Sk + SkET/kI ESkET) <ES)L]0

Apply Schur to (27), we can obtain (19).
Sufficiency. From Lemma 3, we can know that a bounded

solution 0< Sk < Pk to the LMI (17) exists. In view of
definition 3 and Lemma 3, we can see that the filter (21) is a
robust quadratic estimator with an upper bound of error
covariance Sk .

Necessary. The proof about deriving the necessary
condition on the filter for optimality of the upper bound on the
above error variance is analogous to the proof in[13].

From Theorem 1, we can get (AA., AC,) at every sample

time. The prior estimation state of Problem 1 can be obtained
recursively according to (21). The error variance matrix can
also be obtained approximately by solving LMI (17).

Remark 3.2: When solving the robust MHE problem 1, we
can first solve the problem: min trace(Sk l) subject to

Pk+l vSk+l ngk

LMI (18), (19) and (20). The difference between theorem 1
from theorem described in [13] is that we obtain the stability
condition and solve the robust problem by using the LMI tools.
We solve the problem of LMIs with uncertain factor 8k and
obtain the error variance matrix at every sample time. A
approximate error covariance matrix ( Sk ) for the constrained
system is obtained from (17).

Remark 3.3: We note that when the parameter
uncertainty 8k in system (21) disappears and estimation
horizon N = 1 for the unconstrained system, the robust moving
horizon estimator (7) reduces to the standard Kalman filter for
the nominal system.

C. Robust MHE algorithm
From statement above, we now give the following moving

horizon algorithm.
1) Initialization. Set Po = So = S, Q , R, x0 and horizon

N.
2) ForT -1 < N, solve the LMI optimization problem (17)

to get (AA. 'AC,). For a given pair (XT_ TN), we can

get the optimal solution ( T,{Wk }- ) by solving

Problem 1. At last, compute estimation value by (7).
3) ForT 1> N, solve the LMI optimization problem (17)

to get (AAk v ACk) , approximate error covariance

matrix ST N,and the priori estimation state X-TN can be
computed by (21). At last, we obtain the optimal

solution (xO, {Wk }k ) according to a given

pair (xT NT> )
pai (X-N I YT-N )

4) At sample time T, compute the estimation
value XT according to equ. (7).

5) Prepare for the next computation: The next time prior
estimation value can be obtained by (21), and the error
covariance matrix ST-N+1 can be obtained approximately
based on Equ. (17). Let T 1 <- T , adopt the new
measurement YT Go back to Step 2.

IV. SIMULATION

We consider the following uncertain discrete-time system
0 -0.57 -F67

Xk+l = I i Xk + I Wk (28)

Yk [ 100 10]xk +vk (29)

-F69.2 -79.07
So L79.0 234.1] ,x0 [0 0]

0 Disturbance constraints: Wk > 0;
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* State constraints: xjk E [-0.4 0.4], X2 k E [-0.4 0.4] .

where 8 is an uncertain parameter satisfying 181 < 0.3 . Note

that the system above is of the form of system (1), (4)

with H1 l, H2 0,E =[O 0.03],Q =10 and V= 1

andN =10. A =O, A =+0.3 are considered in the simulation
respectively. Fig. 1-Fig. 6 are the simulation results, and
comparison with robust Kalman filter is given. From the
simulation results, it is obvious that the estimation value
obtained based on robust Kalman filter overstep the
constraints. While the estimation state obtained based on
strategy of robust MHE is within the constraints bound. The
robust MHE method based on the optimal strategy can deal
with the constraints considering all parameter uncertainties
and guarantee an upper bound on the filtering error covariance.
So the performance of robust MHE algorithm is better than the
robust Kalman filter.
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V. CONCLUSION

In the framework of moving horizon strategy, the robust
estimation problem is formulated as a guaranteed cost problem
subject to system dynamics and constraints on state and
disturbance in this paper. Firstly, we obtain the prior
estimation state based on a stable robust Kalman filter.
Secondly, a approximate error covariance matrix is obtained
based on LMIs. At the final, comparisons with robust Kalman
filter are given. From the simulation results, we can know that
this proposed approach can make use of the additional
knowledge of constraints on states and disturbances to achieve
an improvement in the estimation performance, so it is a
practical and effective strategy for the constrained system with
uncertain model.

REFERENCES
[1] G.Battistelli A. Alessandri, M. Baglietto. Robust receding -horizon state

estimation for uncertain discrete-time linear systems. Automatica,
54:627-643, 2005.

[2] B. Anderson and J. Moore. Optimal filtering. N.J. Englewood Cliffis.
1979: Prentice-Hall.

[3] R. Findeisen and J. B. Rawlings. Suboptimal infinite horizon nonlinear
model predictive control for discrete tiime systems. NATO Advanced
sutdy institue on Nonlinear Model Based Process Control, 1997.

[4] Xie Lihua, David zhang. Improved robust H2 IH filtering for

uncertain discrete-time systems. Automatica, 40:873-880, 2004.
[5] Yeng chai soh, Lihua xie and E. de Souza. Robust kalman filtering for

uncertain discrete-time systems. IEEE Trans. Automat. Contr,39:1310-
1314, 1994.

[6] C. V. Rao, J. B. Rawlings and J. H. Lee. Constrained linear state
estimation- a moving horizon approach. automatic, 2001. 37(10): p.
1619-1628.

[7] A. H. Sayed. A framework for stae-space estimation with uncertain
models. IEEE Trans. Automat. Contr,46(7):998- 1013, 2001.

[8] U. Shaked and C. E de Souza. Robust minimum variance filtering. IEEE
Trans. Signal Process, 43:2474-2483, 1995.

[9] de Souza, C.E andShaked, U. and Fu, M. robust H -filtering for
continuous time varying uncertain systems with detrministic input
signals. IEEE Trans on Signal Processing, 1995. 43: p. 709-719.

[10] C. V. Rao, J. B. Rawlings and J. H. Lee. Nonlinear
moving horizon state estimation. Proc. Int. Symp,, 1998: p.
146-163.

[11] Fuwen Yang Y. S. Hung. Robust H,. filtering with error variance
constraints for discrete-time varying systems with uncertainty.
Automatica,39:1185-1194, 2003.

[12] Xing Zhu; Yeng Chai Soh; Lihua Xie. Robust Kalman filter design.
Decision and Control, 2000. Proceedings of the 39th IEEE Conference,
2000. 4: p. 3813 -3818.

[13] Zhu, X.S., Yeng Chai; Xie, Lihua Design and analysis of discrete-time
robust Kalman filters. Automatica 2002. 38(6): p. 1069-1077.

1625


