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Abstract—This paper presents a tractable robust meving horizon
estimation (MHE) scheme, where the t¢ be on-line solved
optimization preblem is relaxed to a minimization problem with
an guaranteed bound for any allowed uncertainty. This proposed
approach can make use of the additional knowledge of
constraints on states and disturbances to achieve an improvement
in the estimation performance. Simulation resulfs shew that the
robust MHE is effective for constrained linear systems with
uncertain model.
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L INTRODUCTION

In the past three decades, estimation problem has attracted
the interests of many researchers and cne of the popular
metheds is based on the minimizaticn of the variance of the
estimation error, i.e. the celebrated Kalman filtering approach
[2]. But a central premise in the Kalman filtering theory is that
state-space model is accurate and no censtraints on states and
disturbances. As these assumptions are not easily satisfied in
practice, the standard Kalman filter may net be robust against
medel uncertainty and disturbances or the performance of the
filter can deteriorate appreciably [7]. So research efforts were
focused on approaches that de not rely on such requirements.
For example, an H_ filter is designed by imposing that the H

nerm of the mapping between the disturbances and the
estimation error is minimum. A further possibility consists in
minimizing a quadratic cost function that penalizes the
differences between the measures and the corresponding
predictions, thus leading to the so-called least-squares
estimation. As to the robustmess with respect to system
uncertainties for # estimaters, the reader is referred te [4]. In

additicn, many rcbust filtering algorithms, such as min-max
recursive tobust filter, set-valued estimation, filtering and

guaranteed cost paradigm, has attracted much attenticn, seee.g.,

{[7,12,13]). In practice, often additicnal insight about the
precess is available in the form ef inequality constraints, such
as the concentration of liquid is plus. Here the goal is that of
develeping a method that provides robust minimum-variance
state estimates for uncertain constrained linear discrete-time
systems according to a moving herizon approach.

Building on the success of moving herizon control, moving
herizon estimation (MHE} has been suggested as a practical
strategy to incorporate inequality constraints in estimation, .g.,
([10,6,3]). The basic strategy of the moving horizon
approximation is to consider explicitly a fixed amount of data,
while approximately summarizing the old data not explicitly
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accounted for by the estimator. Rao and Rawlings proved
stability for moving horizon estimation of the constrained
linear system and have demenstrated that MHE 1is a practical
strategy for constrained state estimation [6].

Despite the wvast literature on moving horizen state
estimaticn, few results on the robustmess of such methods is
known to the authors. This motivates our efferts in addressing
robustness to system uncertainty for the moving horizon
estimaticn [1]. In this paper, we propese robust MHE strategy
for the constrained system with norm bounded parameter
uncertainty in both the state and cutput matrices. Robust MHE
is, in general, formulated as sclving a constrained minimax
(instead of the minimization) preblem on-line, where the
maximization is perfermed over a set of uncertainties and/or
disturbances. But the tractability is a crucial issue of minimax
MHE schemes. Here, we firstly find a guaranteed upper bound
for any allow uncertainties. Then, we make use of the
additicnal knowledge of censtraints cn states and disturbances
to achieve an improvement in the estimation performance by
searching a scalar factor.

This paper is crganized as follows. Section II proposes the
problem to be studied. The development and formulation of the
proposed robust MHE are presented in Sectien III. A numerical
example is illustrated in Section IV, which shows the
feasibility of this approach.

II. PROBLEM STATEMENT

Consider  constrained  discrete-time  system  with
uncertainties as follows:
X, = (A+AA I, + Bw, O
= (C+AC )m, + v,
subject to the following time-domain constraints:
eXweW, p eV 2)

x, €R" is the system state, y, e R™ is the measurement,
w, e R? and v, e R™ are system and measurement noise

sequences respectively that satisfy W ., X and V are
polyhedral and convex, the process and measurement noises
has the following assumpticn:

E{w(k)t=0, E{v(k}3}=0
Elw(kw™ (k) =0, B{w(ji w(k)}=Wé, (3
Ep(jnT (k3= Ray, jk=012-
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where E(-) denotes the expectation and §(k)is the Kronecker
Delta function. A,B and € are known real matrices with
appropriate dimensions, and A4, , AC, are unknown matrices

which represent time-varying parameter uncertainties. These
uncertainties are assumed to be of the following structure:

pte 4% ( 2 } ( }
AC}C HQ_

where F, € R/ is an unknown real time-varying matrix, and
H, H,and E are known real constant matrices of appropriate
dimensions that specify how the elements of 4 and € are
affected by uncertainty in F, .

We assume that the system (1) is quadratically stable. To be
more precise, the following definition is introduced.

Definition I: The system (1) is said to be quadratically
stable if there exists a symmetric positive definite matrix
P such that

[A+AA T PIA+AA-P<0, k=012
for all admissible uncertainties Ad, .

Moreover, we assume our estimation to be based on data
obtained in the recent past according to a moving horizon
strategy. We shall follow the moving horizon strategy
described in [12] for quite a general setting and specialized in
[6] for constrained linear systems with no uncertainties. More
specifically, at any stageT the objective is to find estimates of
the state vector X._, (N is the moving horizon size} on the

basis of the observations vector ¥ ,; == { Vi Yrogers* yT} and

of the pricr estimate state ¥,_,,. Toward this end, we intreduce
the following cost function.
J, = min RN +wlQ 1w

S B k:TZ_N i P ) s (5)

. — T o= . —
+(%—N - %71\7) STEN (XT—N — Xy )

subject to (1) and (2} w =y, 7(C‘+ ACk)xk s
Wy ={wp_. Wy, -+ W} . N is the moving horizon size.
xT*N
optimization. Q,R are symmetric positive matrix, which

indicate the confidence of model disturbance and
measwements of noises. Sy , is eror covariance matrix,

and ij, are the decisional variables of the

which expresses our belief in the prior estimation state X ., as
compared with the observation modsl.

The following section will introduce the algorithm of robust
moving horizen estimation.

[I. ROBUST MOVING HORIZON ESTIMATION

The basis of moving horizon estimation is the on-line
solving of an optimization problem with constraints, updated
by the actual measurements at each sampling time. In robust
MHE, we strive in general to solve the following optimization
problem for the system (1) with the actual measurement Y,

in the moving horizon fashicn.

Problem I'For a given pair (ET_N,YTT_N) . find the optimal

estimate:
I ) _ T s T
oo s 5 A
Subject to (1) and (2}, v, = ¥, —(C+AC, Jx, .

. . N — —F r-1
We can cbtain the optimal sclution (xT_ N,{wk }k:T_N) at
time 7 by solving Problem 1, then the state estimation can be
obtained as follows:

B =(ATAAL L DRy B T
(=0 N—1)

Since the propeosed estimation scheme is based on a
minimizaticn optimization with respect te the uncertainties in
the system matrices, we solve the Problem 1 by

®  Transform the uncertain mathematical preblem into

an equivalent certain mathematical program by
appropriately searching a scaling design parameter;

® [Estimate of A4, is available by minimization of an

upper bound on the worst-case cost;

® Find the optimal solution (ETfN{ﬁk}z;;?N) by

minimizing the cost for a given pair (ET_N, Yf_,\,) .

However, the main problem is how to obtain the prior
estimate value X,_,, and the covariance matrix S;._,, .

A.  Estimation scheme

First, we assume that the initial conditionX; is a zero
mean Gaussian random variable independent of the noises w,
andv, , and with an unknown covariance matrix that satisfies

the following assumpticn.
Assumption I
® [E[xx <85, where S, =57 >0 is a known matrix;

L rank[A H, BQ%]:n

Our first objective is to design a stable robust estimator of
the form
Ea=A%+Ky, =0 (8
where A, and K, are time-varying matrices to be
determined in order that the variance of the estimation error
(e, = x, — X, )is guaranteed to be smaller than a certain bound
for all uncertainty matrices F, satisfying (4} , i.e., the
estimation error dynamics satisfies
El(x, —%)(x, —%)71<8,
with §, being an optimized upper bound of filtering

covariance over the class of robust quadratic filters.
In terms of system (1), (4) and (8), the state-space estimation
for the estimation error ¢, are as follows:

Y =(A+H FENX +Gn,,
e =Lk

X(0) = &, (%)
(10}
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o T

A-KC A-A -KC
{ % L 3 }ECF[E E]

KC  A+KC
i, - H-KH,| o [B K]
K H, 0K,

where 7, is a zero-mean white noise signal.
Definition 2: The estimator (8) for system (1} is said to be
a stable quadratic estimator associated with a symmetric
nonnegative definite matrix X satisfies the inequality
(Ad + Hc{FkEc{) X (AC, + HC,F}CEC{)T -X+GG7 <0 (11
for all uncertainties A4, and AC, satisfying (4).

The definition of quadratic estimator is an extension of the
standard Kalman filter. Indeed, in our main result of the paper,
we will show that the quadratic estimator is a modified
Kalman filter where the uncertainties of the system matrices
are appropriately accounted for in the filter structure. It is a
principal task to transform the uncertain mathematical
problem into an equivalent certain mathematical program. To
be more precise, the fellowing definition is introduced.

Definition 3: Filter (8) is said to be a robust quadratic filter

if for some £, > 0, there exists a bounded TT, =TI > ( that
satisfies the following Riccati difference equaticn (RDE}:
I, = AT AL + & H H + GWGT
+ AclHkE:; {g;'1- EcznkEj ! EC,HkAj
and such that 7- £, E TT,E} > 0, where IT, = diag{5,.0} and
O =diag{(Q.R}.
Frem [13], we can know that for all admissible
uncertainties, the covariance matrix satisfies the bound

E[inf] <II, Vke[0,T]. Furthermore,
Ele,e] 1< LILL =TI, vk e[0,7] (13}
where 1T, , € R*™ is the (1,1) bleck of the matrix IT, and e,

is the astimation error.

B A4, AC, calculation

12)

Before calculation A4, , AC, ., we infreduce the following
two lemmas. Lemma 1 is the matrix converse theorem.
Lemma 2 provides a approximate transform condition from
uncertain system to certain system.

Lemma I[11]: For any matrices X and ¥ of appropriate
dimensions and any constant« >

(X' -a¥Vy =X+ X¥ (@l -YXYT )T ¥X (14}

Lemma 2[12]: Given matrices ¥,H,E of appropriate
dimensions and with ¥ symmetric, then

Y+HFE+E'FTHT <0 for all F satisfying FTF <17, if
and only if there  exists a scalar £>0 such
that Y + s HH  + £ 'ETE <D

The following two RDEs need to be introduced which is
related to the content of Lemma 3.

B =APA 4+ AP;CET(%— ER,ETYy'ER AT

; (15}
+ EHIHIT + BWB”
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5, = AQ, AT —(AQ,CT +%HIH§ HR, +CQ.CTY
(16)
x(AQ,C" + %HI HY + Lk H H +BWB"

From theorem 2.1 of [5], we know that a quadratic estimator
will provide a knewn guaranteed upper bound for filtering
error covariance. The following Lemma, which shows that the
existence of P, and §, is guaranteed by the existence of IT,
to (12).
Lemma 3: Under Assumption 1, for a given filer of (8) and
for some scalar £, > 0
® the RDE(12) has a bounded sclutionII; over [0,7] and
such that 7-gE,[I, E; >0 , then there exists a
bounded solution P, = F] > to the RDE(IS) over
[0,7] for the same &, >0 and such that £" —£,ETE > 0.
® the RDE (15) has a bounded solution P, over[0,7]and
such that ' — £, E"E >0, then there exists a bounded
selutien S, = S;- >0 to the RDE (16) over[(,T] for the
same & >0 and such that §;' — £, EE » 0, Purthermore,
P =8, »0over[0,T].
A proof of Lemma 3 can be found in [9].
Remark 3.1: In general, the optimal selution IT; of (12)
should be of the

following form:

11 II 11 ¢
I, = ' R o T , where all blocks
Hll,k HEl,k 0 E _Hll,k

are pxn matrices, which is argued similar to the continuous-
time case as in [8].

Since the proposed estimation scheme is based on a
minimizaticn optimizatien with respect to the uncertainties in
the system matrices. We should firstly obtain A4, , AC, at
every sample time throughout the following Theorem.

Theorem I: Consider that the uncertain system (1) and (4)
satisfies Assumptions 1. Then there exists a robust quadratic
filter for the system that minimizes the bound on the error
variance in (13} if and only if exists £, > 0 and

min trace(S,,; } subject te (18),(1%) and (20). (17)

partiticned

o1 St 2
AP A" + B HH +BOR -P, -4 AQTET <0 (18)
& ERE" - B,
B.HH +BWB™ -8, +AS, A" AHH.+A5C"  ASE"
& V+ B HH, CS.ET |<0
& & ES,E" - 5.1
19

& denotes transpose of matrix, 8, = %

0<s, <P 20)
solution P =P" >0 and 5, =S5, >0
[0,T] with F = 5’0 , such that P{I —skETE >0 and
S'-gE'E>0 . Ais a assistant factor. Moreover, the
optimal  guaranteed cost can be  obtained by
Eltx, — % ¥x, —%,Y1< 8, . Under this conditicn, an cptimal

quadratic guaranteed cost a priori filter is given by

exists a over



R = (A+AADR +(AQCT + £ HHT) el
(R, +COCTY Ny, —(C+ACHE), &, =0

where
A, =g AS E" (I -, ES EY'E,
AC, =&,CS, E (I -, ES,E'Y'E.
Proof. Firstly, we suppese that there exists a robust
quadratic filter for the uncertain system. It follows from

Definiticn 3 that there exists a bounded solution [, = Oto (12).

From Lemma 3, we can know that bounded positive definite
(P.S.) Pl FE>0
and §;' -, E"E > 0.

solution exists  satisfying

Let g, = gk'l , the RDEs (15)-(16) can be transformed as fellow:

(AP AT+, HHT +BWB" —P, -1  APE" <0
| & ERE" -4,
(22}
r T T T T T
AQA" + B H H +BWB -5, AQC" + B H H,
| & V+ B HHE +COCT
(23}

Then it follows from (23} that
BHH] +BWB" =S5,

| & V+p,HH & Q. C”
(24}
where
_AQkAT AQk CT A T T -1 -1 T
= AN |, =85 "—-cEE,
& cpcCct| € Q"[ ] 0 =5 4
R, =V+ ;' H,H] . then we can obtain:
B.HHf +BWB -5, BHH; A
AH HT V+AHOD  C <0 2%
AT bodl *Q;:I
{ﬁkHIHIT+BWBTSk+1 pHH] ]
& VB H HE
ﬁk 24542 (26}
A LT DA AT T
{C](ﬁkg E-S]) [A ¢ ]<0
Applying Lemma 1 te (26}, we can obtain
{ﬂkHIHIT-FBWBT_SkH A H H] }
& V+ A HH'
)Bk 2572 (27}

A ) AT
o (S, +S,E (B,I-ES,E" Y ES,) o <0

Apply Schur to (27), we can obtain (19).

Sufficiency. From Lemma 3, we can know that a bounded
solution 0< S, <P, to the LMI (17} exists. In view of
definition 3 and LLemma 3, we can see that the filter (21} is a
rebust quadratic estimator with an upper beund of error
covariance S, .

Necessary. The proof about deriving the necessary
condition on the filter for optimality of the upper bound on the
above error variance is analogous to the proof in[13].

HH] HAQ;AT AQkC""}O

From Theorem 1, we can get (AAE,ACk)at every sample

time. The prior estimation state of Problem 1 can be cbtained
recwrsively according to (21). The error variance matrix can
also be obtained approximately by solving LMI (17).

Remark 3.2: When solving the robust MHE preblem 1, we

. min trace(S,HI) subject to

Tt Sieat £k
LMI (18), (16} and (20). The difference between theorem 1
from theorem described in [13] is that we cobtain the stability
condition and solve the robust preblem by using the LMI tools.
We solve the problem of LMIs with uncertain factor &, and

can first solve the problem:

obtain the error variance matrix at every sample time. A
approximate error covariance matrix ($, ) for the constrained
system is obtained from (17}.

Remark 3.3: We note that when the parameter
uncertainty s, in system (21} disappears and estimaticn
horizon & =1 for the unconstrained system, the rebust moving

horizen estimator (7} reduces to the standard Kalman filter for
the nominal system.

C. Robust MHE algorithm
From statement above, we now give the following moving
horizon algorithm.
1} Initialization. Set B, =8, =5,.0, R, X, and horizen
N.
2y ForT -1< N, solve the LMI optimization problem (17}
to get (AAk ,AC‘k) . For a given pair (XT_N,YQ?_N) ., We can

T-1

get the optimal solution (ﬁ;,{w;} ) by solving

k=0

Problem 1. At last, compute estimation value by (7).
3} ForT-1=> N, solve the LMI optimization problem (17}

to get (AAk,ACk) R

matrix S;_, , and the priori estimation state X, , can be

approximate error covariance

computed by (21). At last, we cbtain the optimal

; o w7t ;
solution (xﬂ,{wk} ) according to a
i=0

given
pair (ELNvY;:N) :
4y At sample time T cempute the estimation

value § accerding to equ. (7).

3} Prepare for the next computation: The next time prior
estimation value can be obtained by (21), and the error
covariance matrix S;_,,, can be obtained approximately

based on Equ. (17). Let T—-1<«T , adopt the new
measurement ¥, . Go back to Step 2.
IV. SIMULATION

We censider the following uncertain discrete-time system

¢ 05 —6
x;cn:l 5 X T 1 Wy (28}

v, =[-100 10]x, ++, 2%

- [692 7907 _
5, = . % =[0 0]
~79.0 2341

®  Disturbance constraints: w, 20}
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®  Stafe constraints: x,, e[-0.4 0.4], x,, e[-0.4 0.4].
where & is an uncertain parameter satisfying|5‘ <(.3. Note

that the system above is of the form of system (1}, (4)

with #,=| |, H,=0,E=[0 0.03],0=10 and V=1,

10
and N =10. A=0,A=40.3 are considered in the simulaticn

respectively. Fig. 1-Fig. 6 are the simulation results, and
comparison with robust Kalman filter is given. From the
simulation results, it is cobvious that the estimation value
obtained based on robust Kalman filter overstep the
constraints. While the estimation state obtained based on
strategy of robust MHE is within the constraints bound. The
robust MHE method based on the optimal strategy can deal
with the constraints considering all parameter uncertainties

and guarantee an upper bound on the filtering error covariance.

So the performance of robust MHE algorithm is better than the
robust Kalman filter.

— True Systern
i~ RMHE
Robust Kalman Filter
05t [ 1
ok
e
05+
aF i
15 1 . I I I I I
o £l 10 15 20 25 30 35 40

time{sec)

Fig. 1. Comparisen of estimater X , (& = —0.3 }

0s T T T T

- True System
i RMHE
Robust Kalman Filter

2

L
o & 10 15 20 25 30 35 40

3 L L L

time(sec)

Fig. 2. Comparison of estimator X, , (& = —0.3)
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Fig. 3. Comparison of estimator X; , (&=0

—— True System
-+ RMHE
-~ Robust Kalman Filter

time(sec)

Fig. 4. Compariscn of estimator X, , (d=0)

— True System

. .
0 5 0 15 0 25 a0 E3 0
time(sec)

Fig. 5. Comparison of estimator X, , (& = (1.3}

- True System
RWHE
Robust Kalman Filter

I
5 10 15 20 25 30 35 40
time(sec)

Fig. 6. Comparison of estimator X, , (&=03)
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V. CONCLUSION

In the framework of moving horizon strategy, the robust
estimation problem is formulated as a guaranteed cost problem
subject to system dynamics and constraints on state and
disturbance in this paper. Fimstly, we obtain the prior
estimation state based on a stable robust Kalman filter.
Secondly, a approximate error covariance matrix is obtained
based on LMIs. At the final, comparisons with robust Kalman
filter are given. From the simulation results, we can know that
this proposed approach can make use of the additional
knowledge of constraints on states and disturbances to achieve
an improvement in the estimation performance, so it is a
practical and effective strategy for the constrained system with
uncertain model.
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